Example actor paid per result
Pay $1.00 for 1,000 items
This Actor may be unreliable while under maintenance. Would you like to try a similar Actor instead?
See alternative ActorsExample actor paid per result
Pay $1.00 for 1,000 items
This is an example actor demonstrating "pay per result" model. When you run this actor, you are only charged for the results it produces, not for the underlying platform usage.
Actor Metrics
1 monthly user
-
1 bookmark
Created in Jan 2023
Modified 2 years ago
You can access the Example actor paid per result programmatically from your own applications by using the Apify API. You can choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "k9jMWzljc93lay2Me"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/mhamas~example-actor-paid-per-result/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-mhamas-example-actor-paid-per-result",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/mhamas~example-actor-paid-per-result/runs": {
50 "post": {
51 "operationId": "runs-sync-mhamas-example-actor-paid-per-result",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/mhamas~example-actor-paid-per-result/run-sync": {
93 "post": {
94 "operationId": "run-sync-mhamas-example-actor-paid-per-result",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "firstNumber",
135 "secondNumber"
136 ],
137 "properties": {
138 "firstNumber": {
139 "title": "First integer",
140 "type": "integer",
141 "description": "The number you want to add to the second number."
142 },
143 "secondNumber": {
144 "title": "Second integer",
145 "type": "integer",
146 "description": "The number you want to add to the first number."
147 }
148 }
149 },
150 "runsResponseSchema": {
151 "type": "object",
152 "properties": {
153 "data": {
154 "type": "object",
155 "properties": {
156 "id": {
157 "type": "string"
158 },
159 "actId": {
160 "type": "string"
161 },
162 "userId": {
163 "type": "string"
164 },
165 "startedAt": {
166 "type": "string",
167 "format": "date-time",
168 "example": "2025-01-08T00:00:00.000Z"
169 },
170 "finishedAt": {
171 "type": "string",
172 "format": "date-time",
173 "example": "2025-01-08T00:00:00.000Z"
174 },
175 "status": {
176 "type": "string",
177 "example": "READY"
178 },
179 "meta": {
180 "type": "object",
181 "properties": {
182 "origin": {
183 "type": "string",
184 "example": "API"
185 },
186 "userAgent": {
187 "type": "string"
188 }
189 }
190 },
191 "stats": {
192 "type": "object",
193 "properties": {
194 "inputBodyLen": {
195 "type": "integer",
196 "example": 2000
197 },
198 "rebootCount": {
199 "type": "integer",
200 "example": 0
201 },
202 "restartCount": {
203 "type": "integer",
204 "example": 0
205 },
206 "resurrectCount": {
207 "type": "integer",
208 "example": 0
209 },
210 "computeUnits": {
211 "type": "integer",
212 "example": 0
213 }
214 }
215 },
216 "options": {
217 "type": "object",
218 "properties": {
219 "build": {
220 "type": "string",
221 "example": "latest"
222 },
223 "timeoutSecs": {
224 "type": "integer",
225 "example": 300
226 },
227 "memoryMbytes": {
228 "type": "integer",
229 "example": 1024
230 },
231 "diskMbytes": {
232 "type": "integer",
233 "example": 2048
234 }
235 }
236 },
237 "buildId": {
238 "type": "string"
239 },
240 "defaultKeyValueStoreId": {
241 "type": "string"
242 },
243 "defaultDatasetId": {
244 "type": "string"
245 },
246 "defaultRequestQueueId": {
247 "type": "string"
248 },
249 "buildNumber": {
250 "type": "string",
251 "example": "1.0.0"
252 },
253 "containerUrl": {
254 "type": "string"
255 },
256 "usage": {
257 "type": "object",
258 "properties": {
259 "ACTOR_COMPUTE_UNITS": {
260 "type": "integer",
261 "example": 0
262 },
263 "DATASET_READS": {
264 "type": "integer",
265 "example": 0
266 },
267 "DATASET_WRITES": {
268 "type": "integer",
269 "example": 0
270 },
271 "KEY_VALUE_STORE_READS": {
272 "type": "integer",
273 "example": 0
274 },
275 "KEY_VALUE_STORE_WRITES": {
276 "type": "integer",
277 "example": 1
278 },
279 "KEY_VALUE_STORE_LISTS": {
280 "type": "integer",
281 "example": 0
282 },
283 "REQUEST_QUEUE_READS": {
284 "type": "integer",
285 "example": 0
286 },
287 "REQUEST_QUEUE_WRITES": {
288 "type": "integer",
289 "example": 0
290 },
291 "DATA_TRANSFER_INTERNAL_GBYTES": {
292 "type": "integer",
293 "example": 0
294 },
295 "DATA_TRANSFER_EXTERNAL_GBYTES": {
296 "type": "integer",
297 "example": 0
298 },
299 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
300 "type": "integer",
301 "example": 0
302 },
303 "PROXY_SERPS": {
304 "type": "integer",
305 "example": 0
306 }
307 }
308 },
309 "usageTotalUsd": {
310 "type": "number",
311 "example": 0.00005
312 },
313 "usageUsd": {
314 "type": "object",
315 "properties": {
316 "ACTOR_COMPUTE_UNITS": {
317 "type": "integer",
318 "example": 0
319 },
320 "DATASET_READS": {
321 "type": "integer",
322 "example": 0
323 },
324 "DATASET_WRITES": {
325 "type": "integer",
326 "example": 0
327 },
328 "KEY_VALUE_STORE_READS": {
329 "type": "integer",
330 "example": 0
331 },
332 "KEY_VALUE_STORE_WRITES": {
333 "type": "number",
334 "example": 0.00005
335 },
336 "KEY_VALUE_STORE_LISTS": {
337 "type": "integer",
338 "example": 0
339 },
340 "REQUEST_QUEUE_READS": {
341 "type": "integer",
342 "example": 0
343 },
344 "REQUEST_QUEUE_WRITES": {
345 "type": "integer",
346 "example": 0
347 },
348 "DATA_TRANSFER_INTERNAL_GBYTES": {
349 "type": "integer",
350 "example": 0
351 },
352 "DATA_TRANSFER_EXTERNAL_GBYTES": {
353 "type": "integer",
354 "example": 0
355 },
356 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
357 "type": "integer",
358 "example": 0
359 },
360 "PROXY_SERPS": {
361 "type": "integer",
362 "example": 0
363 }
364 }
365 }
366 }
367 }
368 }
369 }
370 }
371 }
372}
Example actor paid per result OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Example actor paid per result from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: